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This paper uses thin-film asymptotics to show how a thin vapour layer can support
a liquid which is heated from below and cooled from above, a process known as
horizontal film boiling. This approach leads to a single, strongly-nonlinear evolution
equation which incorporates buoyancy, capillary and evaporative effects. The stability
of the vapour layer is analysed using a variety of methods for both saturated and
subcooled film boiling. In subcooled film boiling, there is a stationary solution, a
constant-thickness vapour film, which is determined by a simple heat-conduction
balance. This is Rayleigh–Taylor unstable because the heavier liquid is above the
vapour, but the instability is completely suppressed for sufficient subcooling. A
bifurcation analysis determines a supercritical branch of stable, spatially-periodic
solutions when the basic state is no longer stable. Numerical branch tracing extends
this into the strongly-nonlinear regime, revealing a hysteresis loop and a secondary
bifurcation to a branch of travelling waves which are stable under certain conditions.
There are no stationary solutions in saturated film boiling, but the initial development
of vapour bubbles is determined by directly solving the time-dependent evolution
equation. This yields important information about the transient heat transfer during
bubble development.

1. Introduction
Consider film boiling on top of a solid, horizontal heating surface as shown in figure

1. The temperature T ′S of the solid is much greater than the boiling temperature T ′SAT,
also known as the equilibrium or saturation temperature, and the rapidly evaporating
liquid produces a thin vapour film which spreads across the entire heating surface.
When this happens, the increased thermal resistance of the vapour significantly
reduces the heat transfer. Film boiling is often encountered in the quenching of hot
metals, and this reduction in heat transfer can significantly affect the quality of the
final product. In addition, the destabilization of film boiling is responsible for steam
explosions in the degraded core conditions of a nuclear reactor (cf. Kikuchi, Ebisu &
Michiyoshi 1992). These are just two of the many industrial processes which would
benefit from a better understanding of the mechanisms responsible for film boiling.

Recent experimental evidence has also shown that pool boiling in microgravity is
much different to that on the ground (cf. Ervin et al. 1992). The familiar pool boiling
curves relating heat flux to surface temperature, which have been determined from
ground-based experiments, do not adequately describe the same process in space. In
particular, film boiling is observed at a much lower superheat, the vapour bubbles grow
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Figure 1. The two-dimensional film-boiling model. The vapour film lies between the superheated
solid at z′ = 0 and the evaporating liquid surface at z′ = h′(x′, t′). The liquid is cooled by a
number of water-cooled pipes located at z′ = z′L. The interfacial mass flux is denoted by J ′.

much larger and they stay attached to the heating surface instead of rising because
of the reduced buoyancy force. In Space, the force of gravity becomes less important
than the other forces such as surface tension, and film boiling is encountered more
frequently. Thus, a more sophisticated and general theoretical approach is required to
explain these differences and to predict how the change in system parameters affects
the experiments. The small Bond number approximation presented in this paper is
an important step in that direction.

Film boiling is characterized by two important parameters. The first is the superheat
∆T ′SUP = T ′S−T ′SAT, the difference between the temperature of the solid and the satu-
ration temperature. The second is the subcooling ∆T ′SUB = T ′SAT − T ′L, the difference
between the saturation temperature and the bulk temperature T ′L of the liquid. For
low values of the superheat, the solid is either partially or completely wetted by the
liquid. As the superheat increases, a critical value is reached where the vapour film
completely covers the solid. This is called saturated film boiling if the subcooling is
zero. Otherwise, it is known as subcooled film boiling. A general description of these
and other pool boiling regimes can be found in Carey (1992).

In saturated film boiling, all of the heat conducted across the vapour film goes into
evaporation. The average film thickness increases with time, and a flat liquid–vapour
interface is Rayleigh–Taylor unstable because the vapour film lies beneath the heavier
liquid. Vapour bubbles are released at the nodes of the instability, but as long as there
is no significant liquid–solid contact, film boiling will continue.

In subcooled film boiling, some of the heat which would have gone into evaporation
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is now removed by the cooler liquid. As a result, less vapour is produced when
compared to saturated film boiling for the same superheat. In fact, if all of the
heat conducted across the vapour film is removed by the cooler liquid, there is no
energy left for evaporation, and the film is stationary. The particular film thickness
which satisfies this condition is known as the equilibrium film thickness and can
be determined by a simple heat-conduction balance. This unusual solution has been
observed in the experiments of Abbassi & Winterton (1989) and Shoji & Kaneko
(1986) for the largest subcooling that they consider. The existence of this solution
was explained by Tanaka (1988), who showed that the stationary film is stable if its
thickness is less than a certain critical value. Since the equilibrium thickness decreases
as the subcooling is increased (with fixed superheat), the film is stable for sufficient
subcooling.

The relationship between film boiling and the Rayleigh–Taylor instability was first
mentioned by Chang (1959). Zuber (1959) postulated that the minimum solid-wall
temperature required to sustain film boiling corresponds to the point where vapour is
produced fast enough to compensate for the normal collapse rate of the film. Berenson
(1961) used a lubrication approximation in the thin vapour film to arrive at a fairly
accurate relationship between the observed heat flux and the surface temperature,
but the shape of the liquid–vapour interface was fixed. Yiantsios & Higgins (1989)
studied the Rayleigh–Taylor instability of thin viscous films beneath a heavier liquid
but without evaporation. They derived a single, strongly-nonlinear equation which
described the evolution of the film thickness. Burelbach, Bankoff & Davis (1988) used
a similar approach to study evaporating liquid films on a horizontal solid plate, but
there was no Rayleigh–Taylor instability because the liquid is beneath the vapour. A
summary of these and other long-wave equations can be found in the review article
by Oron, Davis & Bankoff (1997).

The present paper extends the analysis of Yiantsios & Higgins (1989) by including
evaporative effects. The resulting evolution equation is used to study both saturated
and subcooled film boiling, but particular emphasis is placed on the nonlinear,
steady-state solutions of subcooled film boiling.

The film-boiling model is introduced in § 2. A lubrication approximation is used
in § 3 to derive a strongly-nonlinear evolution equation satisfied by the film thickness.
This equation is solved using a variety of methods. The linear stability of three different
basic states is determined in § 4. In particular, it is shown that the equilibrium film of
subcooled film boiling is stable if the subcooling is large enough. A local bifurcation
analysis is used in § 5 to determine the solution structure near the neutrally-stable
point. Numerical branch tracing is used in § 6 to extend these solutions into the
strongly-nonlinear regime. A number of initial-value problems are also solved in
§ 6 in order to describe the early development of vapour bubbles and to verify the
bifurcation results.

2. Formulation of the model
The current film-boiling model is shown in figure 1. The heating surface is located

at z′ = 0. Only two-dimensional disturbances are permitted for the moment, so the
thickness of the vapour film is given by z′ = h′(x′, t′), where h′ is a single-valued
function of horizontal position x′ and time t′. The single-valuedness assumption is no
longer valid when vapour bubbles start to pinch off from the film. Thus, this model
can only describe the early development of such bubbles.

The solid temperature T ′S is specified at a distance z′S beneath the solid–vapour
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interface in order to remove the thermal singularity which would be present as h′ → 0
if the temperature on the boiling surface and the temperature on the liquid–vapour
interface were both fixed to different constants (cf. Oron, Bankoff & Davis 1996).

The method of achieving the subcooling varies from experiment to experiment,
but typically, as in Abbassi & Winterton (1989), a number of water-cooled pipes are
placed in the liquid at some distance z′L above the heater surface. This is incorporated
into the current model by setting the liquid temperature equal to T ′L at z′ = z′L. Since
the liquid layer is heated from below and cooled from above, one might expect to see
buoyancy-induced convection in the liquid. Indeed, natural convection is observed in
the experiments of Abbassi & Winterton (1989) for their largest subcooling. However,
the stable film is known to exist whether or not there is any convection. The effect
of convection on the heat transfer is included in the current model by using an
experimentally-determined heat-transfer coefficient which depends on the Rayleigh
number in the liquid.

The liquid and vapour are both treated as incompressible, Newtonian fluids with
constant material properties. It is assumed that the state of the vapour is completely
determined by the horizontal and vertical velocity components u′ and w′, pressure
p′ and temperature T ′. The temperature of the solid is denoted by θ′. Since the
liquid–vapour interface is a free surface, the film thickness h′ is another unknown.
Finally, J ′ is the mass flux across the liquid–vapour interface due to evaporation or
condensation; J ′ > 0 for evaporation. The mass transfer is always assumed to be
normal to the interface.

The boundary conditions on the solid surface at z′ = 0 are no-slip, continuous
temperature and continuous heat flux. On the free surface z′ = h′, the boundary
conditions represent a balance of mass, momentum and energy across an evaporating
interface. These conditions were derived by Delhaye (1974) for an arbitrary surface
but were written out in a useful component form by Burelbach et al. (1988).

It may seem inappropriate to treat the vapour as an incompressible fluid, but as
long as the superheat is much less than the saturation temperature, this is a reasonable
assumption. For example, if the vapour is treated as an ideal gas, the vapour density ρ
is inversely proportional to the temperature. The temperature of the vapour changes
from about T ′S near the solid surface to about T ′SAT near the liquid–vapour interface.
The relative change in density is small as long as ∆T ′SUP/T

′
SAT � 1. In a typical

experiment, T ′SAT ≈ 373 K, ∆T ′SUP ≈ 100 K, and ∆T ′SUP/T
′
SAT ≈ 0.3. Thus, for small

to moderate superheat, incompressibility is reasonable, but for larger superheat, one
may need to reconsider this assumption.

The term −ρg appears in the vertical momentum equation in the vapour in order
to account for the gravitational body force, where g is the gravitational acceleration.
Similarly, −ρLg is the gravitational body force in the liquid, where ρL is the liquid
density. The buoyancy force ∆ρg, where ∆ρ ≡ ρL − ρ, is due to the jump in density
across the liquid–vapour interface and is responsible for the Rayleigh–Taylor insta-
bility. If the roles of liquid and vapour were interchanged, there would no longer be
any Rayleigh–Taylor instability because the heavier liquid would then lie beneath the
vapour and buoyancy would actually be stabilizing.

A simple relationship between J ′ and T ′ is determined by considering the kinetic
theory of an ideal gas (cf. Palmer 1976). If the departure from equilibrium is small,
then it is appropriate to use this simple linear relationship,

K ′J ′ = T ′ − T ′SAT at z′ = h′, (2.1)

where K ′ = (8R3
GT

′5
SATπ

−1m−3)1/2(Lp′SAT)−1 is called the the disequilibrium number;
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RG is the ideal gas constant, m is the molar mass, L is the latent heat per unit mass
and p′SAT is the saturation pressure corresponding to T ′SAT. The value of K ′ is typically
much less than one, and the interfacial temperature remains close to equilibrium
unless J ′ gets very large. This same equation was used by Burelbach et al. (1988) to
study evaporating liquid films. For larger departures from equilibrium, Schrage (1953)
derived a more general equation which reduces to (2.1) when linearized around the
equilibrium point (cf. Panzarella 1998).

It is more convenient to work in terms of dimensionless variables. This is achieved
by identifying a number of important dimensional scales, and the scaled variables
are written without primes. There are several choices for the length scale, but the
one chosen for the current paper is the average initial film thickness d. This length
scale exists for both subcooled and saturated film boiling, unlike the equilibrium film
thickness, for example, which only exists in the subcooled case. For saturated film
boiling there are no steady solutions, and this is the most reasonable choice. For
subcooled film boiling, one might wonder whether it is better to choose the initial
film thickness or the equilibrium film thickness as the appropriate length scale. In
order to avoid having to define different length scales for each case, the initial film
thickness is chosen for both. The only apparent drawback is that certain results, such
as the equilibrium solutions, are independent of d, and yet the solution, when written
in terms of the dimensionless parameters, still seems to depend on it. However, in
these cases, the dimensionless parameters, of course, always group together in such
a way that the actual dependence on d cancels out. In the opinion of the authors,
the generality of this choice outweighs any minor aesthetic difficulties that might
arise. Furthermore, the initial film thickness is almost always chosen to be close to
the equilibrium thickness when it exists, and so for practical purposes this choice is
irrelevant. The numerical value of d in table 1 is on the order of the stable equilibrium
film thickness observed by Abbassi & Winterton (1989).

Continuing with the non-dimensionalization, a typical pressure scale is the hydro-
static pressure difference gd∆ρ. The hydrostatic pressure is subtracted from p′ before
scaling by gd∆ρ to obtain the dimensionless reduced pressure p in the vapour. The
pressure in the liquid is scaled analogously. A typical velocity scale gd2∆ρ/µ is found
by balancing pressure and viscous forces in the vapour film, where µ is the dynamic
vapour viscosity. The time scale µ/gd∆ρ is found by dividing the length scale by the
velocity scale. The dimensionless temperatures measure relative deviation from the
saturation temperature: T = (T ′ −T ′SAT)/T ′SAT and θ = (θ′ −T ′SAT)/T ′SAT respectively.
A mass-flux scale is found by balancing heat conduction across a film of constant
thickness d with the energy required for evaporation, resulting in k∆T ′SUP/dL, where
k is the vapour thermal conductivity.

The properties of water at the boiling point are listed in table 1 along with those
of a typical solid. Typical values of ∆T ′SUP, ∆T ′SUB, z′S and z′L are taken from the
representative experiments of Abbassi & Winterton (1989).

3. The long-wave equation
A lubrication approximation in the vapour film results in a single, strongly-nonlinear

evolution equation for the dimensionless film thickness h which retains the leading-
order effects of evaporation, buoyancy and surface tension. A detailed derivation is
not included in the current paper but can be found in Panzarella (1998). A review of
other long-wave evolution equations and their applications is provided by Oron et al.
(1997).
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Properties of water: Properties of copper:

ρ 0.6× 10−3 g cm−3 ρS 8.9 g cm−3

ρL 0.96 g cm−3 kS 4.0× 107 erg cm−1 s−1 K−1

µ 1.26× 10−4 g cm−1 s−1 κS 1.2 cm2 s−1

µL 2.9× 10−3 g cm−1 s−1

κ 0.2 cm2 s−1

κL 1.7× 10−3 cm2 s−1

k 2.4× 103 erg cm−1 s−1 K−1

kL 6.8× 104 erg cm−1 s−1 K−1

σ 59 dyn cm−1

L 2.3× 1010 erg g−1

m 18 g mol−1

αL 7.5× 10−4 K−1

A′ 10−13 erg

Other parameters: Dimensionless groups:

p′SAT 101.3× 104 dyn cm−2 A 5.63× 10−10 ∆TSUB 4.02× 10−2

T ′SAT 373 K B 1.60× 10−3 ∆TSUP 2.68× 10−1

∆T ′SUP 100 K E 8.68× 10−3 K 1.90× 10−5

∆T ′SUB 15 K Dk 3.53× 10−2 zL 10
d 0.01 cm Dµ 4.34× 10−2 zS 10
z′L 0.1 cm Γk 6.00× 10−5 H 1.12
z′S 0.1 cm R 2.87× 103 Q 1.46
g 981 cm s−2 G 35.6 Λ 6.19× 10−4

RG 8.31× 107 erg K−1 mol−1 N 1.58
η 6.8× 105 erg cm−2 s−1 K−1

Table 1. The material properties of water at the boiling point. A typical heater in the experiments
is made of copper. Typical values of d, ∆T ′SUP, ∆T ′SUB, z′S and z′L are taken from the experiments of
Abbassi & Winterton (1989).

The primary assumption used to derive the evolution equation is that the film
thickness d is much less than the characteristic length of the instability λ′, i.e. d� λ′.
This results in a small Bond number B = d2∆ρg/σ, where σ is the surface tension.
Since B measures the relative strength of buoyancy to surface tension, B � 1 means
surface tension is much stronger than buoyancy. Since the effect of surface tension
is stronger when the local film curvature is higher, short-wavelength disturbances are
stabilized, and the remaining instability consists primarily of long wavelengths. From
table 1, one can see that B � 1 for a typical film-boiling experiment, justifying the
long-wave assumption. In terms of the dimensionless wavelength λ = λ′/d or the
dimensionless wavenumber β = 2π/λ, the long-wave assumption requires λ � 1 or
β � 1.

The linear-stability analysis of the constant-thickness, isothermal film by Yiantsios
& Higgins (1989) shows that the smallest dimensionless wavenumber that can be
stabilized completely by surface tension is B1/2 as B → 0; a perturbation with
wavenumber less than B1/2 is unstable. The most unstable wavenumber (largest
growth rate) is (B/2)1/2, and its growth rate is O(B) as B → 0. For this reason, it
is better to describe the instability in terms of the O(1) coordinates X = B1/2x and
τ = Bt.

The long-wave assumption leads to a lubrication approximation in the vapour film.
This means that the pressure in the film is independent of vertical position, pz = 0,
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and the horizontal pressure gradient is balanced by viscous forces, B1/2pX = uzz (the
subscripts denote partial differentiation by the corresponding variable).

Since the dynamic viscosity of the liquid µL is normally much greater than that
of the vapour (see table 1), the tangential component of velocity at the interface
is nearly the same as the horizontal component of the bulk liquid velocity, which
is assumed to be zero. To see this, consider the simplified form of the shear-stress
boundary condition for a nearly-flat interface, i.e. Dµuz = uL

z , where Dµ = µ/µL is
the viscosity ratio and uL is the horizontal component of the liquid velocity. In the
limit as Dµ → 0, uL

z → 0 and uL has the same value at the interface as it does in the
bulk liquid, namely uL = 0 at z = h. Since the tangential component of velocity must
be continuous across the interface, this also implies that u = 0 at z = h. This is the
form of the boundary condition that is used in the present analysis. It is only strictly
valid as long as Dµuz � 1, and this may be violated if uz gets too large. According to
the lubrication approximation, uz = 1

2
B1/2hpX at z = h, so the boundary condition is

valid as long as |DµB1/2hpX | � 1. This is true as long as the pressure gradient pX does
not get too large. The forthcoming numerical results in § 6.2 will show that pX ≈ 0
everywhere except at a few isolated points where the film thickness is minimum (in
the gap region between bubbles). At those points, the vapour shear stress gets larger,
but a comparison of the actual numerical values shows that this choice of boundary
condition is still valid. For example, for the worst case in figure 12, the maximum
value is |DµB1/2hpX | ≈ 0.01 � 1, and the boundary condition is likely to still be
valid. If the pressure gradient became much larger, then the most general form of the
shear-stress boundary condition would be required. This would lead to a non-trivial
coupling between the long-wave equation and a solution of the Stokes equations in
the liquid (cf. Yiantsios & Higgins 1989).

There is one finer point regarding the shear-stress boundary condition that should
be mentioned. Although, the leading-order condition uL

z = 0 at z = h may still be
valid, the assumption that the bulk liquid velocity is zero may not be. In fact, since
the liquid is heated from below, natural convection is likely, and the bulk liquid
velocity would then no longer be zero. The validity of the boundary condition u = 0
at z = h would then be questionable. The condition u = uL is still appropriate, but
a great deal of additional work would be required to determine the liquid velocity
uL at the interface (although it is certainly possible). This is not appropriate for the
simple analysis striven for in the current paper, and for this reason, it is assumed
that the boundary condition u = 0 at z = h still holds even when natural convection
is present. The effect of natural convection on the heat transfer is included in the
model, however, by using an empirically-determined heat transfer coefficient as will
be shown later.

The next boundary condition is the kinematic condition at the interface. The
application of this boundary condition leads to the standard Reynolds equation for
Poiseuille flow but modified to include evaporative effects,

hτ =
E∆TSUP

B
J + 1

12
(h3pX)X, (3.1)

where the evaporation number E = kµT ′SAT/ρ∆ρLgd3 is the ratio of viscous to
evaporative time scales, and ∆TSUP = ∆T ′SUP/T

′
SAT is the dimensionless superheat.

Note that in (3.1) the horizontal pressure gradient is multiplied by h3. This diminishes
the effect of the pressure gradient as h→ 0.

Although not appropriate for the current analysis, it is interesting to note that if
the boundary condition uz = 0 (negligible liquid shear stress) had been used instead
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of u = 0 at z = h, the fraction 1
12

appearing in the above equation would be replaced

by 1
3
. This shows that the particular choice of shear-stress boundary condition does

not change the structure of the dynamics, but it does tend to modify the growth
rate of the instability. In reality, the actual solution probably lies somewhere between
these two extremes.

The dimensionless reduced pressure p, which is independent of z, is determined
from the long-wave form of the normal-stress boundary condition at the free surface,

p = −h− hXX at z = h. (3.2)

The first and second terms respectively account for buoyancy and surface tension.
The dimensionless mass flux J is determined by solving one-dimensional, steady

heat equations in the vapour and solid,

Tzz = θzz = 0. (3.3)

The superheat is prescribed at z = −zS = −z′S/d,
θ = ∆TSUP at z = −zS, (3.4)

and the temperature and heat flux are continuous at the solid–vapour interface,

θ = T at z = 0, (3.5)

θz = ΓkTz at z = 0, (3.6)

where Γk = k/kS is the ratio of vapour to solid thermal conductivity.
An energy balance across the free surface results in

∆TSUPJ = − N

DkzL

(T + ∆TSUP)− Tz at z = h, (3.7)

where Dk = k/kL is the ratio of vapour to liquid thermal conductivities and
N = ηz′L/kL is the Nusselt number corresponding to the dimensional heat-transfer
coefficient η. This is combined with the dimensionless form of (2.1),

K∆TSUPJ = T at z = h, (3.8)

to eliminate J in (3.7); K = kK ′/dL is the dimensionless disequilibrium number. This
is the only remaining boundary condition needed to solve for the temperatures. Once
the temperatures are known, J is computed from (3.7).

If there were no motion in the liquid, then the heat transfer would be due solely to
steady heat conduction in the liquid and N = 1 (assuming d/z′L � 1 so that variations
in the film thickness do not significantly affect the liquid heat flux). Temperature-
induced buoyancy effects may lead to convection in the liquid which would enhance
the heat transfer on the liquid side of the interface. In general, this is represented by
a relationship between N and the Rayleigh number R = ρLgαL∆T ′SUBz

′3
L /µLκL in the

liquid, which measures the relative importance of buoyancy to viscous effects; αL is the
coefficient of thermal expansion in the liquid and κL is the thermal diffusivity of the
liquid. For natural convection between two horizontal plates separated by a distance
z′L, an experimental correlation is determined by Hollands, Raithby & Konicek (1975).
Since there is no rigid surface in the liquid, this relationship is modified to use the
critical Rayleigh number valid for rigid-free boundaries. In addition, only the first
mode of instability is considered. With these modifications, the empirical relationship
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becomes

N =


1, R < 1101

1 + 1.44

(
1− 1101

R

)
, R > 1101.

(3.9)

When R < 1101, there is no motion in the liquid and the heat transfer is due to
steady heat conduction only. For higher values of R, the heat transfer is enhanced by
natural convection. The above correlation also assumes that the liquid temperature
profile has had sufficient time to reach steady state. This may not always be the case,
and a more general treatment would permit N to be a function of time as well as R,
i.e. N = N(R, τ).

Only the steady form of N is required for the present analysis since the threefold
focus of this paper is to determine the equilibrium solutions of subcooled film boiling,
the slow dynamics near equilibrium and the much faster dynamics of saturated film
boiling. In the first case, the equilibrium solutions obviously only depend on the
steady form of N. In the second case, the time scale of the film dynamics can be made
arbitrarily large, by choosing the initial state of the system to be close enough to
equilibrium, in order to give the liquid temperature enough time to reach steady state
before the interface deforms appreciably. In the saturated case, there is no heat loss
on the liquid side of the interface since the subcooling is zero, and so the particular
value of N does not really matter anyway. The only situation where the transient
nature of N is important would be the approach to equilibrium in strongly-subcooled
film boiling if the initial temperature gradient on the liquid side of the interface
were zero. This is a special case because the system would start out behaving like
saturated film boiling (rapid instability), but as the liquid near the interface cools, the
amount of evaporation would decrease, and the system would eventually behave like
subcooled film boiling near equilibrium. The open question here is whether or not
the increasing liquid heat flux would have sufficient time to suppress the instability
before the film deformation leads to vapour-bubble detachment. Since this is a much
more complicated question that deserves a separate detailed analysis, this case will
not be examined in the present paper. Instead, it will always be assumed that the
liquid near the interface has had sufficient time to reach steady state before the onset
of the instability. This restricts the choice of initial conditions somewhat, but there is
still a considerable amount to be learned by doing so.

The solution of this steady-state thermal problem yields a simple relationship
between J and h,

J =
BQ

E∆TSUP

1− h/H
h+ Λ

, (3.10)

where

H =
∆TSUP

∆TSUB

DkzL

N
− ΓkzS (3.11)

is the dimensionless equilibrium thickness (the ratio of the dimensional equilibrium
thickness to the initial film thickness d),

Q =
E(∆TSUPDkzL − ∆TSUBNΓkzS)

B(DkzL +KN)
(3.12)

measures the heating of the solid, and

Λ =
DkΓkzLzS +KDkzL +KNΓkzS

DkzL +KN
(3.13)
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accounts for the non-equilibrium evaporation condition and the thermal resistance of
the solid plate. Typical values of H , Q and Λ are also listed in table 1.

The mass flux J increases as h decreases and is bounded as h→ 0 as long as Λ 6= 0,
which is the case if either the solid has a finite thermal conductivity or if one uses a
non-equilibrium evaporation condition at the interface (cf. Oron et al. 1996).

Substituting J and p into (3.1) results in a single, strongly-nonlinear evolution
equation satisfied by the film thickness h,

hτ = Q
1− h/H
h+ Λ

− 1
12

[
h3(h+ hXX )X

]
X
. (3.14)

The first term on the right-hand side of (3.14) is due to evaporative mass loss, and
the second and third terms include the effects of buoyancy and surface tension,
respectively. This equation is almost identical to the one derived by Burelbach et al.
(1988) except for the form of the mass-loss term. Q is now positive because the
direction of evaporation is reversed from that of Burelbach et al. (1988), and the
buoyancy term changes sign because the roles of liquid and vapour are interchanged.
This makes evaporation stabilizing for film boiling, whereas it is destabilizing for
liquid films. Similarly, although buoyancy is stabilizing for a liquid film, it is the
driving mechanism behind the Rayleigh–Taylor instability of film boiling. The surface-
tension term remains the same because a negative film curvature increases the local
film pressure regardless of whether the film is liquid or vapour. Thus, even though
this equation resembles those used previously to study liquid films, the nature of the
solutions is quite different.

The derivation of this evolution equation places no restriction on the value of h
other than it not become extremely large or small (by an order of magnitude) and as
long as hx � 1 (hX � B−1/2). Otherwise, neglected terms may no longer be negligible.
This is why (3.14) is called a strongly-nonlinear evolution equation, as opposed to a
weakly-nonlinear equation which would only be valid if h were arbitrarily close to
some basic-state solution. The small-slope assumption always breaks down as vapour
bubbles pinch off from the film because the slope becomes infinite. Thus, the evolution
equation is only able to describe the early development of such vapour bubbles. A
boundary-element method is used in Panzarella (1998) to extend these solutions all
the way up to the point where the bubble pinches off from the film since it removes
the restriction on the shape of the liquid–vapour interface.

3.1. Subcooled film boiling

In subcooled film boiling, both the subcooling ∆TSUB and the superheat ∆TSUP are
non-zero. There is a simple steady-state solution h = H with a dimensional film
thickness

dE = Hd =
∆TSUP

∆TSUB

Dkz
′
L

N
− Γkz′S. (3.15)

This is the particular film thickness which exactly balances the heat conducted
across the film with the heat loss due to liquid subcooling. The special case H = 1
corresponds to the situation where the average initial film thickness d is equal to the
equilibrium thickness dE. It is easy to show that the arbitrary H equation is equivalent
to an H = 1 equation (except for the initial conditions) by the simple transformation:
h = Hh̄, Q = H5Q̄, Λ = HΛ̄ and τ = H−3τ̄. Substituting this into (3.14) yields the
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following equation in terms of the new variables:

h̄τ̄ = Q̄
1− h̄
h̄+ Λ̄

− 1
12

[
h̄3
(
h̄+ h̄XX

)
X

]
X
. (3.16)

Note that this equation has exactly the same form as (3.14) except that now H = 1.
This is just another way of showing that one could have just as easily chosen the
length scale to be the equilibrium thickness dE, when it exists. This would have made
H = 1, but then the other parameters would have depended on the superheat and
subcooling through the parameter dE. This is undesirable, however, because it is much
better to choose a scaling such that the superheat and subcooling are independently
adjustable parameters since this has a more direct physical interpretation in the
experiments.

The only thing preventing an arbitrary H solution from being identical to an H = 1
solution is the initial conditions. If the initial condition for h is h = h0(X) at τ = 0,
then the initial condition in terms of h̄ is h̄ = H−1h0(X). For those situations in which
the initial conditions are not important, e.g. linear stability and bifurcation analyses,
results from the H = 1 solution can be immediately transformed into arbitrary H
results. An example of this will be given in § 4.3.

3.2. Saturated film boiling

The saturated case is obtained when the subcooling is zero (∆TSUB = 0). If the
superheat is fixed, then H →∞ and the evolution equation becomes

hτ =
Q

h+ Λ
− 1

12

[
h3 (h+ hXX )X

]
X
. (3.17)

There are no stationary solutions in saturated film boiling since all the heat conducted
across the film goes into evaporation. The average film thickness always increases,
and an equilibrium thickness does not exist. Since the subcooling is zero, Q increases
linearly with increasing superheat,

Q =
E∆TSUP

B
. (3.18)

3.3. Isothermal film

When the superheat and subcooling are both zero (Q = 0), the resulting evolution
equation is

hτ = − 1
12

[
h3 (h+ hXX )X

]
X
. (3.19)

This same equation was used by Yiantsios & Higgins (1989) to study the Rayleigh–
Taylor instability of thin viscous films beneath a heavier liquid. Any constant h
satisfies this equation but is always unstable due to buoyancy forces. Surface tension
stabilizes the short-wavelength disturbances, but the long-wavelength disturbances
will eventually dominate. The instability will either lead to the release of a vapour
bubble, or the film will approach a particular steady-state solution consisting of a
sinusoidal bubble attached to the solid surrounded by a zero-thickness film. It takes
an infinite amount of time to reach this steady state, however, because the minimum
film thickness decays like τ−1/2 (cf. Hammond 1983).
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Figure 2. The basic-state film thickness h∗ given by (4.1) when Λ = 0: H = 1, steady subcooled
film boiling; H = 10, time-dependent subcooled film boiling; H−1 = 0, time-dependent saturated
film boiling.

4. Linear stability of basic states

The spatially-uniform solutions of (3.14) for arbitrary H satisfy

dh∗

dτ
= Q

1− h∗/H
h∗ + Λ

with h∗(0) = 1. (4.1)

The film thickness remains constant when h∗ = H , decreases if h∗ > H , and increases
when h∗ < H . However, since the solution must always start at h∗ = 1 (since the
length scale d is the average initial film thickness), there are three different cases
depending on the value of H , as shown in figure 2. When H = 1, the initial film
thickness is equal to the equilibrium film thickness, and the solution is stationary for
all times. When H 6= 1 but still finite, the solution will evolve from the initial value
h∗ = 1 to the final value h∗ = H according to (4.1). When H−1 = 0, there are no
steady solutions, and the film thickness increases without bound. The first two cases
arise in subcooled film boiling while the last occurs only in saturated film boiling.
Note that any solution of (4.1) evolves on the evaporative time scale Qτ. The film
growth is slower as Q gets smaller because the rate of evaporation is reduced. When
Q = 0, there is no preferred film thickness, but the only solution which satisfies the
initial condition is h∗ = 1.

The stability of any basic state h∗ is determined by substituting h = h∗(τ) +
a exp(s(β, τ)τ + iβX) into (3.14) and solving for the leading-order growth rate when
|a| � 1,

s(β, τ) =
1

τ

∫ τ

0

[
1
12
β2(1− β2)h∗3 − Q(H−1Λ+ 1)

(h∗ + Λ)2

]
dτ. (4.2)

This depends on the wavenumber β and is time-dependent if the basic state is
time-dependent. The basic state is unstable if this growth rate remains positive as
τ→∞.

The wavenumber of the perturbation must be restricted in order to be consistent
with the long-wave assumption. Since βX = βB1/2x, this requires βB1/2 � 1 or
β � B−1/2 as B → 0. The subsequent results show that the unstable wavenumbers
lie in the range 0 < β < 1, and this is consistent with the long-wave assump-
tion.
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Figure 3. Growth rate s vs. wavenumber β for linear stability of steady subcooled basic state
when H = 1 and Λ = 0. The basic state is stable when Q > QC.

4.1. Case H = 1

For the special case H = 1, the average initial film thickness is equal to the equilibrium
thickness so that the basic state is h∗(τ) = 1, and the constant linear growth rate is

s(β) = 1
12
β2(1− β2)− Q

1 + Λ
. (4.3)

The maximum growth rate occurs at the most unstable wavenumber βMAX = 1/
√

2.
Increasing Q decreases each growth rate by the same constant amount. There is a
critical value,

QC =
1 + Λ

48
, (4.4)

greater than which all the growth rates are negative and the basic state is linearly
stable. A plot of the growth rate versus wavenumber for three different values of Q
is shown in figure 3 when Λ = 0. The basic state is stable when Q > QC.

4.2. Case H−1 = 0

Next, consider the time-dependent basic state of saturated film boiling when Λ = 0,

h∗(τ) = (2Qτ+ 1)1/2. (4.5)

The corresponding time-dependent growth rate is

s(β, τ) = 1
30
β2
(
1− β2

) [ (2Qτ+ 1)5/2 − 1

2Qτ

]
− Q ln(2Qτ+ 1)

2Qτ
, (4.6)

and the initial behaviour is found by expanding in powers of Qτ,

s(β, τ) ∼ 1
12
β2
(
1− β2

)
(1 + 3

2
Qτ)− Q+ Q2τ, |Qτ| � 1. (4.7)

If Q > QC, all the growth rates are initially negative, and there is an early period of
stabilization. However, the long-time asymptotic behaviour,

s(β, τ) ∼
√

2

15
β2(1− β2)(Qτ)3/2, |Qτ| � 1, (4.8)

shows that the growth rate for all wavenumbers less than unity will eventually
become positive. Thus, the saturated basic state is always unstable even though
there might be an early period of stabilization. Figure 4(a) shows the growth rate
vs. wavenumber given by (4.6) for three different times when Q = 2QC. Since Q > QC,
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Figure 4. Time-dependent growth rates s(β, τ) for linear stability of time-dependent basic states
when Λ = 0: (a) saturated film boiling (H−1 = 0) with Q = 2QC; (b) maximum growth rate
sMAX = s(βMAX, τ) for subcooled film boiling when H = 10.

all perturbations are initially damped, but long-wavelength instabilities eventually
dominate. Since stabilization is observed only as long as τ � Q−1, increasing Q will
provide the initial stabilization but at the cost of decreasing the period of time over
which it can be observed.

4.3. Case 1 < H < ∞
There is a time-dependent basic state in subcooled film boiling when the initial film
thickness is less than the equilibrium thickness (1 < H < ∞), but the solution can
only be obtained in implicit form,

h∗(τ) = H + (1−H) exp

(
1− h∗ − QH−1τ

H + Λ

)
. (4.9)

The corresponding growth rate is determined by numerically integrating (4.2).
When H � 1, the film will initially behave like saturated film boiling, but as time

increases the thickness approaches the equilibrium value h∗ = H , and the growth rate
approaches the constant

s(β) = 1
12
H3β2(1− β2)− Q

H(H + Λ)
. (4.10)

If this is negative for every wavenumber, then the basic state is stable. This is achieved
by selecting Q larger than the critical value

QC(H) =
H4(H + Λ)

48
, (4.11)

which depends on H but reduces to (4.4) when H = 1. The growth rate of the
most-unstable wavenumber is graphed in figure 4(b) for a few different values of Q
and is always negative when Q > QC(H). Note that (4.11) can be obtained from (4.4)
by the substitutions Q→ Q/H5 and Λ→ Λ/H as mentioned in § 3.1.

4.4. Summary of linear-stability results

When H = 1, the steady basic state h∗ = 1 is stable if Q > QC. The time-dependent
basic state of saturated film boiling (H−1 = 0) is always unstable, but there may be
an initial period of stabilization if Q is large enough. Finally, the time-dependent
approach to the subcooled equilibrium solution (1 < H < ∞) is stable if Q is large
enough to stabilize the final equilibrium solution h∗ = H .
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Figure 5. (a) The neutral-stability curve defined by (4.14) and (4.15) in terms of the dimensional
superheat ∆T ′SUP and subcooling ∆T ′SUB for the properties of water in table 1. (b) Neutral-stability
curve in terms of the dimensional film thickness d. A vapour film with equilibrium film thickness
dE, given by (3.15), is stable if dE < dC, where dC is the critical film thickness given by (4.16). The
subcooling is fixed to ∆T ′SUB = 15 K. The other material properties are taken from table 1. The
square data points � are the experimental measurements of dE for the stable film as determined by
Abbassi & Winterton (1989). No stable film is observed in the experiments when ∆T ′SUP > 200 K.

The steady basic state is neutrally stable when Q = QC. Since Q has no direct
physical interpretation, it is more useful to have a relationship between the superheat
and the subcooling because these are two of the most easily-controlled parameters
in the experiments. If the superheat and subcooling are varied independently of one
another, then H will change as well. Thus, the form of the critical value QC(H) which
depends on H is required. First, note that Q can be written as

Q =
E∆TSUBNH

B(DkzL +KN)
. (4.12)

Thus, the stability condition Q = QC(H) becomes

E∆TSUBNH

B(DkzL +KN)
=
H4(H + Λ)

48
. (4.13)

The only parameters in the previous equation which depend on the superheat or the
subcooling are H and N. It is also possible to show, with the help of a little algebra,
that (4.13) is independent of the arbitrary initial film thickness d as it should be. By
using the material properties in table 1 and neglecting the very small terms involving
Λ and K , the numerical form of (4.13) becomes

N∆TSUB = 0.11605∆T
4/5
SUP, (4.14)

and N depends on the subcooling according to the following numerical relationship:

N =

 1, ∆T ′SUB < 7.68 K

2.44− 11.08 K

∆T ′SUB

, ∆T ′SUB > 7.68 K.
(4.15)

These last two equations are used to construct the neutral-stability curve shown in
figure 5(a). This shows that for each particular value of the superheat, the film is
stable for sufficient subcooling. Likewise, if the subcooling is fixed, the film is stable
if the superheat is small enough. The sudden change in slope at ∆T ′SUP = 43.0 K
corresponds to the onset of natural convection at ∆T ′SUB = 7.68 K. For a larger
superheat, convection enhances the liquid heat transfer, and less subcooling is required
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to remove the same amount of heat than if there were no convection. For example, if
the subcooling is fixed to ∆T ′SUB = 15 K, the basic state is stable if ∆T ′SUP < 192.72 K.
If there were no convection, then a subcooling of at least ∆T ′SUB = 25.5 K would be
required to stabilize the film for the same superheat.

Since the dimensional film thickness is related to the superheat and subcooling
by (3.15), it is possible to restate the neutral-stability condition in terms of the film
thickness. For example, substituting the critical value of N∆TSUB given by (4.14) into
(3.15) yields the critical value of the dimensional film thickness,

dC = 0.030418 cm ∆T
1/5
SUP, (4.16)

less than which the film is stable. Depending on the actual value of the subcooling,
the equilibrium thickness dE may be less than or greater than this critical value.
If dE < dC, then the film is stable. Otherwise, it is unstable. For example, if the
subcooling is fixed to ∆T ′SUB = 15 K, then dE increases linearly with increasing
superheat as shown in figure 5(b). Also shown in the figure is the critical thickness
dC. The two curves intersect when ∆T ′SUP = 192.72 K. Thus, the basic state is stable
when ∆T ′SUP < 192.72 K and unstable when ∆T ′SUP > 192.72 K. This is reasonably
consistent with the experimental measurements of dE by Abbassi & Winterton (1989)
which are also shown in figure 5(b) as the square data points. They only observed the
stable vapour film when ∆T ′SUP < 200 K, coinciding with the predicted intersection
of the two curves. However, experimental data for strongly-subcooled film boiling
are scarce, and more precisely-controlled experiments are necessary before drawing
further conclusions.

In order to understand how a thin vapour film can be stabilized by evaporation,
consider a small perturbation of the equilibrium thickness h′ = dE. The resulting film
thickness will be less than dE in some places and greater than dE in others. Liquid
closer to the solid wall receives a greater heat flux, and the extra associated energy
quickly evaporates the incoming liquid. Since the rate of evaporation increases as the
equilibrium thickness decreases as shown in (3.10), the liquid will evaporate faster for
the same perturbation if the equilibrium film is thinner. For a sufficiently thin film,
the liquid evaporates fast enough to compensate for the growth rate of the instability
in the absence of evaporative effects. This moves the liquid away from the wall and
back towards equilibrium. Likewise, liquid further from the wall receives less heat
from the solid, the interfacial vapour condenses and the liquid moves back towards
equilibrium. Thus, the basic state is stable if the equilibrium film is thin enough. Since
the equilibrium thickness decreases as the subcooling increases (with fixed superheat)
as shown by (3.15), the basic state is stable for sufficient subcooling.

5. Local bifurcation analysis
For simplicity, assume that the average initial film thickness d is equal to the

equilibrium thickness dE by choosing H = 1. The results for arbitrary H can be
obtained from the H = 1 results by the transformation described in § 3.1.

The steady basic state h = 1 is unstable when Q < QC, but when δ = 1 − Q/QC

is close to zero, there is a supercritical bifurcation to a branch of spatially-periodic
equilibrium solutions at Q = QC. In order to see this, consider periodic solutions of
(3.14) on the interval −λ/2 < X < λ/2,

h(X, τ) = 1 +

∞∑
n=−∞

an(τ)e
inβX, (5.1)
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Figure 6. Equilibrium solutions near the bifurcation point δ = 0 for subcooled film boiling on
a periodic interval when β = βMAX and H = 1. (a) Bifurcation diagram determined from the
Landau equation (5.7) in terms of the solution norm (5.10): —— , stable; – – – , unstable. (b) Landau
coefficient Υ as it depends on Λ.

where β = 2π/λ is the wavenumber associated with the spatial period λ and an is the
time-dependent amplitude of the nth Fourier mode. In order to measure departure
from the basic state, a solution norm is defined by

‖h− 1‖2 ≡
∫ λ/2

−λ/2
(h− 1)2 dX. (5.2)

Equation (5.1) is substituted into (3.14) resulting in a system of equations satisfied by
the complex Fourier amplitudes,

ȧn = sn an +

∞∑
j=−∞

N2,n,j ajan−j +

∞∑
j=−∞

∞∑
k=−∞

N3,n,j,k ajakan−j−k + O(a4), (5.3)

where the

sn =
β4

MAX

12

[
δ − (n2 β2

β2
MAX

− 1)2

]
(5.4)

are the discrete linear growth rates, and

N2,n,j = 1
4
β2n(n− j)[1− (n− j)2β2] +

β4
MAX(1− δ)

12(1 + Λ)
, (5.5)

N3,n,j,k = 1
4
β2n(n− j − k)[1− (n− j − k)2β2]− β4

MAX(1− δ)

12(1 + Λ)2
(5.6)

are the constant coefficients of the quadratic and cubic nonlinear terms, respectively
(cf. Panzarella 1998).

The largest value of sn is obtained when βMAX/β = n, when λ is an integer multiple
of the most unstable wavelength. When β = βMAX, all of the growth rates are negative
except for s1, which is positive if δ > 0 and negative if δ < 0. The basic state is
neutrally stable when δ = 0, and the local solution structure is determined by carefully
scaling the Fourier amplitudes: a0 = O(δ), an = O(δn/2) for n > 1, and τ = O(δ−1). The
leading-order solution in δ yields a Landau equation for the most unstable mode a1,

ȧ1 =
β4

MAX

12
a1(δ − Υ |a1|2), (5.7)
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where

Υ =
1 + 75Λ+ 63Λ2

9(1 + Λ)2
(5.8)

is the Landau coefficient. Υ is positive and so the bifurcation is always supercritical.
When δ > 0, the film thickness on the bifurcated solution branch is given by

h = 1 + 2

(
δ

Υ

)1/2

cos (βMAXX) + O(δ). (5.9)

The corresponding solution norm,

‖h− 1‖ =

(
4π

ΥβMAX

)1/2

δ1/2, (5.10)

is graphed in figure 6(a) for three different values of Λ. Thus, as δ increases past
zero, the basic state loses stability to a new branch of spatially-periodic equilibrium
solutions.

Since Υ increases as Λ increases, as shown in figure 6(b), the solution norm decreases
with increasing Λ. If interfacial equilibrium is assumed by choosing K = 0, then Λ
reduces to Λ = ΓkzS. This shows that Λ is simply proportional to the thickness
of the substrate and inversely proportional to its thermal conductivity. Thus, for a
fixed value of δ the amplitude of the bifurcated solution decreases as the thermal
conductivity of the solid decreases or as the plate thickness increases.

6. Numerical solutions of the long-wave equation
Additional results are obtained by numerically solving the long-wave equation, but

only periodic solutions with the most-unstable wavelength are considered here. The
results of Yiantsios & Higgins (1989) indicate for the isothermal problem that the
effect of changing the period of the solution is minimal. Thus, the evolution equation
is solved on the most-unstable interval −√2π < X <

√
2π with periodic boundary

conditions. A pseudo-spectral method is employed to evaluate the spatial derivatives
at a discrete number of grid points, and the time-dependent behaviour is determined
by solving the resulting nonlinear system of ordinary differential equations using the
lsode subroutine (cf. Petzold 1983). The accuracy of this method is monitored by
ensuring that the initial growth rate of the instability agrees with that predicted by
linear stability and that the film volume in the isothermal case remains constant.

The equilibrium solutions are found by using the numerical bifurcation and branch-
tracing code AUTO developed by Doedel (1981). The Landau equation (5.7) provides
a starting point for AUTO, which then follows the solution branch into the strongly-
nonlinear regime. All of the bifurcation results presented here are for the case H = 1,
but this is not a restriction as discussed in § 3.1. The bifurcation results do not depend
on the initial conditions.

Two types of equilibrium solutions are found using AUTO. The first are steady-state
solutions satisfying hτ = 0, and the second are travelling waves satisfying hτ = ±chX
with an a priori unknown wave speed c; this is an additional degree of freedom that
needs to be determined along with the shape of the film profile. A phase condition
like the one described by Aston, Spence & Wu (1992) is used to isolate points on the
group orbit of solutions resulting from the translational and reflectional symmetry of
this problem (due to the periodic boundary conditions).
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Figure 7. Bifurcation diagram for subcooled film boiling showing the influence of the solid thermal
resistance Λ when H = 1: —— , stable; – – – , unstable. The bifurcation parameter is (a) δ; (b) Q;
(c) ∆T ′SUB when ∆T ′SUP = 192.72 K; (d ) ∆T ′SUP when ∆T ′SUB = 15 K. The required material properties
are taken from table 1. The two turning points are at δ = 0.00434 and δ = −0.00949 when Λ = 0.
There are 256 spectral modes.

6.1. Steady states and travelling waves

The non-trivial branch of steady solutions originating from the bifurcation point at
δ = 0 is continued into the strongly-nonlinear regime for several different values of
Λ. The most compact form of the resulting bifurcation diagram is shown in figure
7(a). The same data are shown in figure 7(b) but with Q as the bifurcation parameter.
This shows how the primary bifurcation point QC increases as Λ increases.

When Λ = 0, there is a continuous transition as δ is increased past δ = 0, from the
uniform basic state to the variable film thickness predicted by the Landau equation
(5.7), but as δ is increased past the first turning point at δ = 0.00434, there is a sudden
transition to a larger-amplitude solution on the upper branch. Once on the upper
branch, there is another transition back down to the basic state as δ is decreased below
the second turning point at δ = −0.00949. This is typical of hysteretic behaviour.

From a practical viewpoint, it is more interesting to know how the equilibrium
solutions depend directly on the superheat and the subcooling since these two param-
eters are easily controlled in experiments. This is done by replotting the bifurcation
diagram in terms of the superheat and subcooling by substituting (4.11) and (4.12)
into the definition of δ. By using the material properties in table 1 and neglecting the
small terms involving Γk , Λ and K , the numerical relationship between δ, ∆TSUP and
∆TSUB is

δ = 1− 4.7508× 104 (N∆TSUB)5

∆T 4
SUP

, (6.1)

where N depends on the subcooling according to (4.15). When the subcooling is



182 C. H. Panzarella, S. H. Davis and S. G. Bankoff

5

(a)

0

(b)

–p

10

0

2

1

h

0 p –p 0 p
–1

3

(c) (b)

–p

4

0

0

–D
T

–1 S
U

P
 T

z

0 p –p 0 p

–6

2

1

p
–4

–2

E
D

T
S

U
P
(B

Q
)–1

 J

XX

Figure 8. The dimensionless (a) film thickness, (b) mass flux, (c) heat flux and (d ) pressure for two
points on the bifurcation diagram of figure 7 when δ = 0.00434, Λ = 0 and H = 1: – – – , at the
turning point; —— , on the upper branch.

∆T ′SUB = 15 K, the neutrally-stable point corresponds to a superheat of ∆T ′SUP =
192.72 K. For this particular value of the subcooling, N = 1.7015, and the heat
transfer is enhanced by liquid convection. If the superheat is fixed, then an alternative
form of the bifurcation diagram is obtained by varying the subcooling as shown
in figure 7(c). The first and second turning points correspond to a subcooling of
∆T ′SUB = 14.991 K and ∆T ′SUB = 15.020 K, respectively. Since the temperature range
between these turning points is only a fraction of a degree, the hysteresis loop would
be difficult to observe unless the temperatures were very precisely controlled. If the
subcooling is fixed and the superheat is varied, then another representation of the
bifurcation diagram is obtained as shown in figure 7(d ). In this case, the two turning
points correspond to the superheats ∆T ′SUP = 192.92 K and ∆T ′SUP = 192.26 K,
respectively. The temperature range between these two turning points is a bit larger.
As a result, it would be easier to observe the hysteresis loop. As of yet, there is no
experimental verification of this loop.

The solution at the first turning point along with the solution on the upper branch
for the same value of δ is shown in figure 8 for the case Λ = 0. One could mentally
divide the film profile into three regions: the large-amplitude vapour lobe in the
middle, the surrounding thin film and the narrow transition region between the two,
referred to as the gap region. Most of the evaporation takes place in the thin film,
and the newly-generated vapour passes through the gap region, condensing in the
vapour lobe. The net mass flux (found by integrating J over the entire interval) is
zero because evaporation exactly balances condensation in equilibrium. Even though
the film is stationary, there is a constant flow of vapour from the thin film into the
vapour lobe.

The local mass flux is graphed in figure 8(b) for the corresponding film profiles in
figure 8(a). Clearly, the maximum rate of evaporation occurs when the film thickness is



Nonlinear dynamics in horizontal film boiling 183

200

–1.0

(a) (b)

–0.5
d

100

0
1.0

K = 0
))h

–
1)
)

0.5

(c)

0

(d )

0.90

0.03

1.00

150

50

0

200

100

0

150

50

–1.0 –0.5
d

1.00.50

0.95

200

–1.0 –0.5

100

0
1.0

))h
–

1)
)

0.5

150

50

0

0.01

dd

0.02

))h
–

1)
)

)c
)

TW

SS

SS

SS

TW

TW

SS

Figure 9. The steady-state (SS) and travelling-wave (TW) solutions of subcooled film boiling when
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along the stable TW branch in (c). There are 256 spectral modes.

a minimum. Note that as h gets larger, J approaches the constant rate of condensation
−BQ/E∆TSUPH because the liquid–vapour interface gets further from the wall and
the heat received from the solid is becoming negligible compared to the constant
amount of heat being removed by the liquid subcooling. The net mass flux found by
integrating (3.10) over one spatial period must be zero for a steady solution since,
otherwise, the average film thickness would change with time.

The pressure shown in figure 8(d ) is nearly constant everywhere except across the
narrow gap region. From the normal-stress boundary condition (3.2), a constant-
pressure solution corresponds to a sinusoidal film thickness. The sudden pressure
drop across the gap is what drives the outward flow of vapour from the thin-film
region. The characteristics of this pressure solution suggest that there might be a
simpler way of representing the solution. That is, the film thickness can be thought
of as consisting of two sinusoidal lobes joined together by the rapidly varying gap
function. By focusing attention on the pressure boundary layer in the gap region, it
might be possible to asymptotically match all three solutions together.

The effect of Λ on the bifurcation diagram is also shown in figure 7. As Λ increases,
the critical value QC increases, and a larger subcooling is required to stabilize the
basic state. At a critical value of Λ, the unstable solution branch disappears and the
hysteresis loop is replaced by a single-valued branch of stable solutions.

There is a secondary bifurcation on the steady branch which gives rise to travelling
waves with non-zero wave speed c. The steady solutions are unstable past this point.
This is shown in figure 9 for three different values of Λ. When Λ = 0, the secondary
bifurcation point is located at δ = 0.0778. Symmetry requires each travelling wave
to have a conjugate solution which is a reflected travelling wave moving in the
opposite direction. For small enough Λ, this branch of travelling waves is subcritical
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and unstable as shown in figures 9(a) and 9(b). In this case, it appears that there
are no stable solutions as δ is increased past the secondary bifurcation point. For
sufficiently large Λ, the branch of travelling waves is supercritical and stable as shown
in figure 9(c) for the particular value Λ = 0.5. The wave speed along this branch
is shown in figure 9(d ), and the film profile of a typical asymmetric travelling wave
when δ = 0.984 is shown in figure 10. The solution appears to be symmetric at first
glance, but a closer look at the thin-film region clearly reveals the broken reflectional
symmetry.

The secondary bifurcation point can be given in terms of the subcooling and
superheat by using (6.1). For example, when Λ = 0 and with the dimensional
subcooling fixed to ∆T ′SUB = 15 K, the secondary bifurcation point at δ = 0.0778
corresponds to ∆T ′SUP = 189.14 K. Recall that for this particular subcooling the
primary bifurcation from the basic state occurs when the superheat is ∆T ′SUP =
192.72 K. Likewise, when the superheat is fixed to ∆T ′SUP = 192.72 K, the secondary
bifurcation occurs when ∆T ′SUB = 14.832 K. Since the primary bifurcation point for
this case occurs when the subcooling is ∆T ′SUB = 15 K, the small temperature range
separating these two bifurcation points would make it difficult, but not impossible, to
observe the non-trivial steady solutions in experiments unless the temperatures were
very precisely controlled. However, it would be better to fix the subcooling and vary
the superheat because the temperature range between the bifurcation points is much
larger. Increasing Λ moves the secondary bifurcation point further away from the
primary bifurcation point as shown in figure 9. This would also make the bifurcated
solutions easier to observe in the experiments.

6.2. Initial-value problems

6.2.1. Isothermal film (Rayleigh–Taylor instability)

If evaporative effects are neglected by choosing Q = 0, the vapour film approaches
the steady solution

h(X) =


0, −√2π < X < −π√

2(1 + cosX), −π < X < π

0, π < X <
√

2π

(6.2)

in an infinite amount of time as shown by Yiantsios & Higgins (1989). This is
supported by the numerical solution in figure 11(a). The basic state is unstable, and
the film approaches the steady solution as expected, but it is never reached in any
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Figure 11. The collapse of an isothermal vapour film when Q = 0 due to the Rayleigh–Taylor
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2),
timesteps are ∆τ = 16 and the solution is computed up to τ = 400. The film approaches the steady
solution given by (6.2). There are 256 spectral modes.

finite amount of time. A long-time asymptotic analysis by Hammond (1983) shows
that the volume of the thin draining region between drops decays like τ−1/4 and that
the minimum film thickness decays like τ−1/2. The final pressure shown in figure 11(b)
is nearly constant everywhere except in the gap region.

6.2.2. Saturated film boiling

The saturated film-boiling limit is obtained as H →∞ with non-zero Q. In this case,
the liquid is not cooled, the average film thickness increases with time and there are
no steady solutions. A typical transient solution, which describes the initial growth
of a vapour bubble, is shown in figure 12, assuming a perfectly conducting solid by
choosing Λ = 0. The film volume increases at a nearly-constant rate as shown in figure
12(d ), and most of this is accounted for by the rapidly-growing vapour lobe since the
surrounding thin film is nearly stationary. It is apparent from figure 12(c) that the
pressure is nearly constant in the vapour lobe and in the thin film but changes most
rapidly across the gap region between them. Consequently, the maximum vapour
velocity (and shear stress) is obtained within this region, and, thus, it is here that the
validity of the long-wave equation may become questionable as previously mentioned
in § 3. However, as also previously noted in that same section, the numerical results
for this case confirm that the pressure gradient still satisfies the validity condition for
using the boundary condition u = 0 at z = h .

Most of the evaporation occurs in the nearly-stationary thin film, and the newly-
generated vapour passes through the gap and into the vapour lobe. The minimum
film thickness decays much more slowly compared to the isothermal case as shown
in figure 12(f ). Even though the thin film is nearly stationary when compared to the
growing vapour lobe, a closer look at figure 12(b) uncovers some thickening on a
much longer timescale.

Evaporative mass loss is stabilizing since it opposes the other mechanisms which
act to collapse the film. When the film is isothermal, there is no evaporation and the
minimum film thickness decays to zero. When evaporative effects are included and
a perfectly conducting solid is assumed (Λ = 0), film collapse is suppressed. As the
solid conductivity is decreased, Λ increases, and in the limit as Λ → ∞, the solid is
becoming such a poor conductor of heat that the solution approaches the isothermal
case. This is because the evaporative term approaches the constant Q/Λ as h → 0,
so increasing Λ has the same effect as decreasing Q. Undoubtedly, there is a value
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There are 256 spectral modes.

of Λ somewhere between the limiting values Λ = 0 and Λ−1 = 0 which just barely
keeps the minimum film thickness out of the range of the intermolecular van der
Waals forces so that the film will not collapse during the bubble-release cycle, and
film boiling will persist.

Upon observing the pressure solution, it is clear that the pressure is nearly constant
in the large and small lobes (with different constants) but is rapidly varying within
the gap region. Thus, there is an internal pressure boundary layer in the gap. Since a
constant-pressure solution corresponds to a sinusoidal film thickness, this suggests that
it might be possible to find a simpler representation of the solution by asymptotically
matching the two lobe solutions together through the pressure boundary layer in the
gap. This was done by Hammond (1983) to find the draining time of the small lobe
for the isothermal case.
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As time progresses, the symmetric solution is replaced by an asymmetric solution
that has a travelling-wave character as shown in figure 13. It is not a permanent
wave, however, because the average film thickness continues to increase, as it must
for saturated film boiling. The broken symmetry moves the vapour lobe along the
solid surface to the right or the conjugate solution to the left. Reflection about the
vertical axis transforms one into the other. It is evident from figure 13 that the greater
pressure on the upstream side is responsible for the flow downstream.

6.2.3. Subcooled film boiling

The stability of the subcooled basic state h = 1 is confirmed by solving an initial-
value problem when δ = −0.05 and Λ = 0. A slightly-perturbed film is attracted
to the basic state as shown in figure 14(a). The basic state is unstable when δ > 0,
but figure 7 shows that there are two other stable solutions for each δ in the range
0 < δ < 0.00434. These solutions are locally attracting, but the global basin of
attraction is unknown. Presumably, smaller-amplitude solutions are attracted to the
lower branch while larger-amplitude solutions are attracted to the upper branch. This
is partly confirmed by solving another initial-value problem when δ = 0.004 and
Λ = 0 as shown in figure 14(b). The instability of the basic state is confirmed, and
the film approaches the smaller-amplitude solution predicted from the bifurcation
diagram.

The time required to reach the subcooled steady state in figure 14(b) is much
longer than the time required for similar growth during saturated film boiling (figure
12) or for the collapse of the isothermal film (figure 11). This is consistent with the
experimental observation that subcooled film boiling usually progresses more slowly
than the other boiling regimes (cf. Carey 1992).
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Figure 14. The vapour-film dynamics in subcooled film boiling when H = 1 and Λ = 0: (a)
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basic state h = 1, confirming the linear-stability result, and the solution in (b) converges to the
variable film thickness predicted by the bifurcation analysis. There are 256 spectral modes.

The growth of a vapour bubble in subcooled film boiling is shown in figure 15
when δ = 0.0045 and Λ = 0. There is only one stable solution for this choice of
parameters which lies on the upper branch of the bifurcation diagram in figure 7. The
system starts near the basic state, and the film thickness increases in some places and
decreases in others until it reaches this stable solution. The growth is not uniform,
however, since the film volume increases very slowly at first but then increases rapidly
before reaching the final equilibrium value as shown in figure 15(b). This non-uniform
growth is understood by drawing an imaginary vertical line in figure 7 between the
δ-axis and the point directly above it on the upper branch when δ = 0.0045. Then,
consider the state of the system as it evolves from the basic state to the steady solution
to be associated with a point on this line which moves upwards as time increases.
Since this line is just to the right of the turning point at δ = 0.0043, the growth is
slower as the system passes near the turning point. The growth is more uniform as
δ is increased because the system does not pass so close to the turning point as it
approaches the stable equilibrium.

The stable travelling-wave solution branch predicted from the bifurcation diagram
in figure 9(c) is confirmed by solving an initial-value problem using the particular
travelling-wave solution determined by AUTO as the initial condition. The numerical
solution shown in figure 16 exhibits the expected wave behaviour, and the wave
speed computed from the transient solution agrees with the wave speed computed by
AUTO. The asymmetric film profile is evident in the close-up of the thin-film region
shown in figure 16(b).

7. Conclusions
A long-wave evolution equation which describes film boiling is derived by deter-

mining the small Bond number limit (large surface tension) of the full liquid–vapour
system of equations. The parameters are scaled so as to retain the most important
effects of evaporation, surface tension and buoyancy in the final equation. A non-
equilibrium evaporation condition and the thermal resistance of the solid plate are
also included. The evolution equation proves to be a powerful tool for studying certain
aspects of film boiling.

A constant-thickness vapour film is a solution in subcooled film boiling which
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the timesteps are ∆τ = 2 × 104. The bubble growth is slow at first but speeds up rapidly before
approaching the stable steady solution. There are 256 spectral modes.

exactly balances the heat received from the solid wall with the heat loss due to liquid
subcooling. This is stable if Q > QC, and since Q is proportional to the subcooling,
a sufficiently large subcooling (with fixed superheat) will stabilize this basic state
as shown in figure 5(a). For example, when Λ = 0 and using the typical material
properties in table 1 with a fixed subcooling of ∆T ′SUB = 15 K, the basic state is stable
if the superheat is less than ∆T ′SUP = 192.72 K. Likewise, when the superheat is fixed
to ∆T ′SUP = 192.72 K, the basic state is stable when the subcooling is greater than
∆T ′SUB = 15 K. Since increasing the subcooling with the superheat fixed decreases the
equilibrium film thickness, the film is stable if it is thin enough.

Another important observation is that it would be much easier to observe the
equilibrium film in microgravity because the destabilizing force of gravity is reduced.
To see this, note that the critical film thickness is inversely proportional to the square
of the gravitational acceleration, dC ∝ g−2. If all the other parameters were held fixed
as the strength of gravity is reduced, the critical film thickness would increase, and a
stable, constant-thickness film would be observed with a much greater thickness than
is possible on the ground. Perhaps, future Space experiments could be designed to
validate or discount some of the results presented here.

A weakly-nonlinear analysis reveals a supercritical bifurcation at the point Q = QC.
In terms of δ = 1− Q/QC, linear theory shows the basic state is stable if δ < 0 and
unstable if δ > 0. The film profile corresponding to the branching solutions is, at
leading order in δ, a sinusoidal modulation of the basic state.

The numerical bifurcation package AUTO is then used to follow the solution
branches into the strongly-nonlinear regime. The branch bends back and forms a
hysteresis loop if Λ is small enough as shown in figure 7. Physically, when Λ = 0,
this means that as the subcooling is decreased with the superheat fixed to ∆T ′SUP =
192.72 K, there is a continuous transition to a non-uniform film thickness at ∆T ′SUB =
15 K and then a jump transition to a large-amplitude solution (upper branch) when
the subcooling is decreased below the first turning point at ∆T ′SUB = 14.991 K. If the
subcooling were then increased again, the system would move along the upper branch
in the opposite direction, and the film thickness would gradually decrease until the
second turning point at ∆T ′SUB = 15.020 K is passed, at which time the system would
immediately drop back down to the basic state. If, on the other hand, the subcooling is
decreased while on the upper branch, the steady branch loses stability to a branch of
travelling waves at ∆T ′SUB = 14.832 K as shown in figure 9. The branch of travelling
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waves is subcritical and unstable for small Λ but supercritical and stable for large
enough Λ. An analogous behaviour is observed when the subcooling is fixed and the
superheat is varied. As Λ gets larger, the hysteresis loop vanishes and is replaced by
a single-valued branch of steady solutions.

One must observe a bit of caution. Travelling waves are predicted here in a
model that is spatially periodic. If in an experiment such conditions were valid, then
these waves would be observable. However, in other cases, the edge conditions might
preclude their existence. For example, one situation which might exhibit this behaviour
is film boiling on the interior surface of a large-diameter pipe in microgravity which
is spinning about its axis. The subcooling could be provided by inserting another
smaller-diameter pipe carrying cooler liquid along the axis of the larger pipe. The
centrifugal force due to the spinning pipe would be analogous to gravity, but it would
always be directed radially outwards. Then, the circular symmetry of the pipe would
introduce periodic boundary conditions in the circumferential direction.

In saturated film boiling, there are no equilibrium solutions because there is no
liquid subcooling, but a direct numerical solution of the evolution equation is used to
study the formation of a vapour bubble during the early and intermediate stages of
growth. A number of important characteristics of this process are uncovered. Namely,
the pressure is nearly constant in the growing vapour lobe and in the surrounding
thin film but changes rapidly across the narrow gap region connecting them. This
suggests that it might be possible to derive a simpler representation of the solution by
asymptotically matching the two sinusoidal solutions through the pressure boundary
layer in the gap. In addition, the film volume increases at a nearly-constant rate, but
most of this growth is accounted for by the expanding vapour lobe since the thin-film
region is relatively motionless. The bulk of the evaporation occurs in the nearly-
stationary thin film, and the newly-generated vapour is transported through the gap
region into the growing vapour lobe. This is an important observation because it
indicates that the dynamics of vapour-bubble growth are dictated by what happens in
the thin-film and gap regions, and the growing vapour lobe is mainly a repository of
newly-generated vapour. The thin-film is quasi-steady because there is a local balance
between evaporation and the outward flow of vapour.

One of the goals of film-boiling research is to predict the minimum superheat
required to sustain film boiling. It is known that this depends not only on the
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temperature of the solid but also on other surface properties such as the liquid–solid
contact angle and the surface roughness (cf. Witte & Lienhard 1982). The present
paper does not consider the effects of liquid–solid contact but rather the dynamics
which might lead to such contact. It is seen that evaporation has a stabilizing effect,
and a local equilibrium thickness is maintained which balances evaporation with the
other mechanisms acting to collapse the film as shown in figure 12(f ). When the film
is isothermal, there is no evaporation, and the minimum film thickness decays to zero.
However, when evaporative effects are included and a perfectly-conducting solid is
assumed (Λ = 0), the minimum thickness decays more slowly and even appears to be
approaching a non-zero constant.

Two effects not included in the present evolution equation are the van der Waals
intermolecular forces and vapour thrust, the pressure jump across the free surface
due to the recoil of evaporating molecules. These effects are usually retained in the
evolution equations which describe thin liquid films (cf. Burelbach et al. 1988), but
they are usually negligible in film boiling unless the film gets very thin. To make
this statement explicit, consider the evolution equation for saturated film boiling that
would result if these effects were retained,

hτ =
Q

h
− 1

12

[
h3hX + h3hXXX − 2GB2Q2hX + 3A

hX

h

]
X

, (7.1)

where G = ρ∆ρgd3/µ2 is the Reynolds number in the vapour, and A = A′/(6π∆ρgd4)
is the dimensionless Hamaker constant which measures the relative strength of the
molecular attractions (cf. Panzarella 1998). Next, each effect is compared to buoyancy,
the driving mechanism behind the instability. The ratio of the vapour thrust term to
the buoyancy term is

vapour thrust term

buoyancy term
= 2GB2Q2 1

h3
. (7.2)

Likewise, the ratio of the van der Waals term to the buoyancy term is

van der Waals term

buoyancy term
= 3A

1

h4
. (7.3)

These ratios are graphed in figure 17 along with an indication of the minimum
film thickness observed in the numerical solution shown in figure 12. The parameter
values are taken from table 1. It is seen that these terms are negligible unless the film
thickness gets very small. Since the minimum film thickness never gets small enough
for these other effects to become important, it is reasonable to neglect them in the
present analysis. A boundary element analysis is used in Panzarella (1998) to extend
these solutions up to the point of bubble detachment, and it is shown that the film
thickness never drops below a minimum value which is outside the range of these
forces. The thin liquid film considered by Burelbach et al. (1988) had an average
thickness of about d = 10−6 cm, which corresponds to h = 10−4 in the current
problem. In that case, the vapour thrust and van der Waals attractions are not only
important but dominate over buoyancy. For this reason, buoyancy was neglected in
their problem, but it must be considered here.

As with any asymptotic solution, it is always useful to check that the terms which
were neglected are indeed small. This shows whether the leading-order solution is
consistent or not. In the current example, one of the major assumptions is that the
convective terms in the horizontal momentum equation are negligible when compared
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Figure 17. The ratio of vapour thrust to buoyancy terms given by (7.2) and the ratio of van der
Waals to buoyancy terms given by (7.3) using the parameter values listed in table 1. These effects
only become important when h gets very small. Also indicated in the graph is hMIN, the minimum
film thickness observed in the numerical solution of figure 12, which is outside the range where
these other effects become comparable to buoyancy. This justifies the absence of these additional
terms in the leading-order evolution equation.

to the dominant viscous terms. This explicitly requires Gut � uzz , Guux � uzz and
Gwuz � uzz . The leading-order horizontal and vertical velocity components are

u = 1
2
z(h− z) (h+ B−1hxx

)
x
, (7.4)

w = 1
12

[
z2(2z − 3h)

(
h+ B−1hxx

)
x

]
x
. (7.5)

Since the maximum vapour velocity is attained near the minimum film thickness point,
this would be the most likely place for the convective terms to become important.
At the minimum film thickness point, the slope is zero (hx = 0). Only saturated film
boiling will be considered. The numerical solution in figure 12 shows that the solution
is quasi-steady in the thin film surrounding the growing vapour lobe. That is, the film
profile does not change much because there is a local balance between evaporation
and the flow of vapour out of the film. This is expressed by the equation

QB

h
= 1

12

[
h3
(
hx + B−1hxxx

)]
x
. (7.6)

By assuming the local balance expressed by (7.6) and using (7.4) and (7.5), it is
possible to show that the convective terms are negligible as long as

GQB � 1. (7.7)

As it should be, the previous condition is independent of the initial film thickness d.
For the particular material properties and parameter values in table 1, GQB = 0.08.
Thus, it is reasonable to neglect the convective terms, and the leading-order solution
represented by the evolution equation is consistent. In saturated film boiling, Q is
linearly proportional to the superheat. Thus, the convective terms become more
important as the superheat is increased.

This paper only considers two-dimensional disturbances with h = h(x, t). A three-
dimensional model would require h = h(x, y, t), where y is the other horizontal
coordinate. This would be a very useful extension of the current work because
most, if not all, film-boiling experiments exhibit three-dimensional behaviour. A more
quantitative prediction of bubble shape and size would be possible using the three-
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dimensional evolution equation. The one-dimensional evolution equation can be easily
extended to two dimensions with the result

hτ = Q
1− h/H
h+ Λ

− 1
12
∇ · [h3∇h+ h3∇ (∇2h

)]
, (7.8)

where ∇ is the gradient operator with respect to the scaled coordinates X = B1/2x
and Y = B1/2y.
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